Motion and Design

Vocabulary Term	Meaning/Definition
acceleration *	rate of increase of speed or velocity (example:
	accelerator pedal on a car)
air resistance (drag)	force of air pushing against the motion of an
	object
balanced force	an object remains in place, no movement occurs
control	part of an experiment that does not change,
	serves as the standard to compare other
	observations
direction	the way the force is applied determines this way
	an object moves
distance *	how far an object travels
energy	ability to do work
energy, kinetic	energy of motion (moving ball going down a
	ramp)
energy, potential	stored energy (ball positioned at the top of the
fair test	ramp) changing only one variable and keeping the other
iaii test	conditions the same
force *	any push or pull on an object
friction *	force that resists motion between two touching
Inction	surfaces, slows things down and can also produce
	heat, acts in the opposite direction of the force
gravity, gravitational force	force that brings objects toward earth
inertia *	the tendency of an object to resist a change in
e.	motion or keep doing what it is doing
	Note: the greater the mass of an object, the
	greater the inertia
laws of motion *	three rules, formulated by Isaac Newton, that
	describe how objects move in relation to the
	forces acting on them
machine	used to make work easier
mass *	how much matter an object contains
	Note: Mass is the amount of material in an object
	while weight is the amount of force gravity exerts
	on an object's mass. For example, people weigh
	½ as much on the moon as they weigh on earth,
	but their mass is the same.
model *	a representation in miniature/smaller form
momentum *	force or speed of movement; mass in motion,
	example: a moving train has much more than a
	moving soccer ball
	Note: momentum = mass of an object x velocity

	(increasing the mass or speed increases the
	momentum)
motion *	an object changing position over time; change in
	position is measured by the relationship of
	distance and time
Newton's 1st law of motion *	*An object tends to stay at rest and an object
INERTIA	tends to stay in motion with the same speed and
	in the same direction unless acted on by an
	unbalanced force.
	* Objects tend to keep doing what they are
	doing.
	* If the forces acting upon an object are
	balanced, the acceleration of that object will be
	zero (no motion).
	*also known as the "law of inertia"
Newton's 2 nd law of motion *	* It takes more force to accelerate a more
ACCELERATION	massive object.
	* Acceleration is always in the direction of the
	unbalanced force.
	*If you want something to accelerate faster, you
	need to decrease its mass.
	* Acceleration of an object depends upon two
	variables—the net force acting upon the object
	and the mass of the object.
	* Force = mass x acceleration or F = ma
Newton's 3 rd law of motion *	* For every action, there is an equal and opposite
ACTION AND REACTION	reaction.
	*Explains why forces act in pairs.
	* When one object exerts a force on a second
	object, the second object exerts the same
	amount of force back on the first object (but in
	the opposite direction).
	* Equal forces acting in opposite directions create
	a net force of zero.
	* Action and reaction forces are equal forces
	acting in opposite directions. The reason they
	can't cancel each other out is because they are
roourcivo	acting on different objects. consequential steps
recursive resistance	force pushing against the motion of an object
speed (rate) *	a comparison of distance and time; distance
tochnical drawing *	divided by time (or d/t), example: 25 mph
technical drawing *	a diagram that shows top, side, and front views
technological design *	using engineering ideas to create a model
tension *	the act of stretching or straining (kit example: hot
	tight the rubber bands are when wound around
1001 *	the axle)
test *	to determine if an idea works

unbalanced force	motion occurs; the movement goes in the
	direction of the greater force (example: winning a
	tug-of-war game)
validity	conducting a fair test
variable	something in an experiment that can be changed
velocity *	speed with direction (ex.: 45 mph northwest)
weight	force of gravity pulling down on an object
work	moving an object over a distance